

DIAGNOSTICANDO PROBLEMAS DE CONEXÃO COM O FORTIGATE – PARTE 2

Autor: Flavio Borup

VISÃO GERAL

Dando continuidade ao artigo, parte 1, vamos seguir aprendendo mais algumas técnicas de avaliação de problemas usando a linha de comando (CLI).

Problema: Aplicação não funciona - CONTINUAÇÂO.

A ferramenta de "sniffer" do FortiOS hoje em dia está integrada na GUI (Interface Web) e apesar de limitada é bem útil. Só tem dois problemas: 1) Não está disponível em todos os equipamentos ou configurações de hardware e 2) em algumas versões ele está disponível, mas não tem "atalho", só se chega na ferramenta usando um"link direto". Em certos equipamentos que não tem discos específicos de armazenamento, mesmo digitando o Link direto e vendo a funcionalidade como disponível, não tente usar, não vai dar certo.

Exemplo: usando a URL: <u>https://[Host-IP]/p/firewall/sniffer</u> é possível ver o Sniffer, mas em certos equipamentos pode-se acabar vendo o erro: "Error 403: Access denied."

Se a funcionalidade estiver disponível, você veria:

>	New Packet Capture Filter		Isso geraria um
22	Interface	port1 (LAN)	arquivo ".cap" que mais tarde pode
>	Max. Packets to Save	4000	ser aberto em ferramentas como
ĺ	Enable Filters	o antigo EtherReal,	
>	Host(s) 🚺	10.10.10.1	hoje WireShark e
>	Port(s) 🚯	3389	até o MS Network Monitor 3.4.

A alternativa é fazer via CLI, usando o comando:

diag sniffer packet any 'host 10.10.10.1 and port 3389' <mark>6 0 a</mark>

O problema é que isso será enviado para a tela e não vai ajudar muito. O ideal seria enviar todo a saída para um arquivo-texto. Segue exemplo, usando o PUTTY.

🕵 PuTTY Configuration	×				
Category:	Options controlling session logging				
E Logging E Terminal Keyboard Bell Features	Session logging: None Printable output All session output SSH packets SSH packets and raw data				
⊡ • Window	Log file name:				
···· Appearance ···· Behaviour	C:\temp\problem.cap Browse				

Exemplos de como usar o "sniffer" para diagnosticar alguns problemas

Vendo todo o tráfego, relativo á porta 80, apenas na Porta1

diagnose sniffer packet port1 'port 80'

Vendo todo o tráfego, menos o da porta 22, para tirar o SSH da análise, em todas as interfaces

diagnose sniffer packet any 'not port 22'

Vendo o tráfego relative a um certo Servidor, mas sem o protocolo RDP, abreviando

diag snif packet any 'host 1.2.3.4 and not port 3389'

Versões mais modernas do FortiOS suportam o "grep" para fazer filtros mais precisos, no caso, podemos excluir (-v) a Porta 1 da avaliação preliminar. O parâmetro "4" mostra a porta relativa onde em qual Interface, o tráfego foi detectado.

diagnose sniffer packet any 'port 80' 4 | grep -v port1

Abaixo, a "ida e volta" de um pacote, observe o número sequencial do ACK

VPN-OfficeA in 10.2.1.1.61781 -> 14.2.1.2.80: 1789585242
VPN-OfficeA out 14.2.1.2.80 -> 10.2.1.1.61781: ack 1789585243

Nesse exemplo, vemos que o cliente usou o "socket" de origem 10.2.1.1:61781 para se conectar ao sistema remoto, no "socket" 14.2.1.2:80 de destino.

E também vemos que esse tráfego passou pela Interface de VPN chamada VPN-OfficeA

Isso pelo menos prova que o tráfego passou pelas interfaces e que havia regras (policies) que permitam a passagem desse tráfego em específico.

Se não houve regra (policy) ou se o destino não estiver disponível, pode-ser ver algo como:

82.378862 10.1.1.7.62421 -> 100.4.1.1.80: syn 314583005 85.396138 10.1.1.7.62421 -> 100.4.1.1.80: syn 314583005 91.415968 10.1.1.7.62421 -> 100.4.1.1.80: syn 314583005

Nesse caso acima, houve 3 tentativas, não houve resposta e cada tentativa seguinte, demorou mais que a anterior, comportamento esperado do TCP.

4.025219 VPN-WAN1 in 10.1.1.7.62832 -> 100.4.0.1.80: syn 3491618932 7.030933 VPN-WAN1 in 10.1.1.7.62832 -> 100.4.0.1.80: syn 3491618932 13.035115 VPN-WAN1 in 10.1.1.7.62832 -> 100.4.0.1.80: syn 3491618932 Usando o parâmetro "4" ainda foi possível ver por qual interface o tráfego está passando. Quer mais detalhes? Que tal o parâmetro "2"?. O parâmetro "4" visto antes, se for substituído pelo parâmetro "2", mostra coisas ainda mais interessantes, particularmente em tráfegos sem nenhuma criptografia, codificação ou proteção.

No exemplo abaixo, observa-se uma conexão HTTP (TCP/80), usando a função "GET", no WebSite remoto "test.speedycom.net" ao usar um Browser similar ao MSIE7.

58.0358	14 10	.122.	1.7.6	1399	-> 10	.24.0	.105.	80: psh	3762803081 ack 2705072207
0x0020	5018	ffff	65c5	0000	4745	5420	2f20	4854	PeGET./.HT
0x0030	5450	2£31	2e31	0d0a	4163	6365	7074	3a20	TP/1.1Accept:.
0x0040	696d	6167	652f	6a70	6567	2c20	6170	706c	<pre>image/jpeg,.appl</pre>
0x0050	6963	6174	696f	6e2f	782d	6d73	2d61	7070	ication/x-ms-app
0x0060	6c69	6361	7469	6f6e	2c20	696d	6167	652f	lication,.image/
0x0070	6769	662c	2061	7070	6c69	6361	7469	6f6e	gif,.application
0x0080	2f78	616d	6c2b	786d	6c2c	2069	6d61	6765	/xaml+xml,.image
0x0090	2£70	6a70	6567	2c20	6170	706c	6963	6174	/pjpeg,.applicat
0x00a0	696f	6e2f	782d	6d73	2d78	6261	702c	202a	ion/x-ms-xbap,.*
0x00b0	2f2a	0d0a	4163	6365	7074	2d4c	616e	6775	/*Accept-Langu
0x00c0	6167	653a	2070	742d	4252	0d0a	5573	6572	age:.pt-BRUser
0x00d0	2d41	6765	6e74	3a20	4d6f	7a69	6c6c	612f	-Agent:.Mozilla/
0x00e0	342e	3020	2863	6f6d	7061	7469	626c	653b	4.0.(compatible;
0x00f0	204d	5349	4520	372e	303b	2057	696e	646f	.MSIE.7.0;.Windo
0x0100	7773	204e	5420	362e	333b	2057	4£57	3634	ws.NT.6.3;.WOW64
0x0110	3b20	5472	6964	656e	742f	372e	303b	202e	;.Trident/7.0;
0x0120	4e45	5434	2e30	453b	202e	4e45	5434	2e30	NET4.0E;NET4.0
0x0130	4329	0d0a	4163	6365	7074	2d45	6e63	6f64	C)Accept-Encod
0x0140	696e	673a	2067	7a69	702c	2064	6566	6c61	<pre>ing:.gzip,.defla</pre>
0x0150	7465	0d0a	486f	7374	3a20	7465	7374	652e	teHost:.test.
0x0160	7167	6£67	2e63	6f6d	2e62	720d	0a43	6f6e	<pre>speedycom.netCon</pre>
0x0170	6e65	6374	696f	6e3a	204b	6565	702d	416c	nection:.Keep-Al
0x0180	6976	650d	0a43	6163	6865	2d43	6f6e	7472	iveCache-Contr
0x0190	6f6c	3a20	6e6f	2d63	6163	6865	0d0a	0d0a	ol:.no-cache

Ou, nesse exemplo, um Web Server baseado em IIS:

58.037491 10.24.0.105.80 -> 10.122.1.7.61399: psh 2705072207 ack 3762803457 0x0000 4500 03bc 5f30 4000 8006 820a 0a18 0069 E... 0@.....i 0x0010 0a7a 0107 0050 efd7 a13c 204f e047 d301 .z...P...<.O.G.. 0x0020 5018 fb2c d4af 0000 4854 5450 2f31 2e31 P...,....HTTP/1.1 0x0030 2032 3030 204f 4b0d 0a43 6f6e 7465 6e74 .200.OK..Content 0x0040 2d54 7970 653a 2074 6578 742f 6874 6d6c -Type:.text/html 0x0050 3b20 6368 6172 7365 743d 5554 462d 380d ;.charset=UTF-8. 0x0060 0a53 6572 7665 723a 204d 6963 726f 736f .Server:.Microso 0x0070 6674 2d49 4953 2f37 2e35 0d0a 582d 506f ft-IIS/7.5..X-Po 0x0080 7765 7265 642d 4279 3a20 4153 502e 4e45 wered-By:ASP.NET

É claro que isso é apenas "Ponta do iceberg", uma pequena parcela das possibilidades. Quem sabe esse artigo mereça uma continuação? Só depende dos leitores.